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Abstract—This paper presents YADA, a new software
architecture for real-time robotic control systems that is
minimal, modular, and fully transparent. YADA divides
control software into decoupled behavior, user-interface, and
hardware-level bus modules. This decoupling at the module
level is accomplished by auto-generating human-readable
message types that are tailored to the hardware topology of
the current system. These message types provide modules
with a common framework for exchanging state information
and relaying commands to devices while being agnostic to
the communication protocol itself. We also detail how to
structure behavior and bus modules to facilitate modularity
and flexibility with third party software. YADA has been used
with success on several technology development testbeds at
JPL, an example of which is given in this paper, and has proven
to provide developers a light-weight and highly reconfigurable
system for efficient debugging and practical code sharing.

Index Terms— Real-time robotics, software architecture,
hardware modularity, reconfigurable, distributed systems.

I. INTRODUCTION

There is an ever-increasing trend in the robotics software
community towards development using frameworks that ab-
stract away the more utilitarian functions of inter-process
communication, organization of state information, and the
scheduling and execution of processes. In theory, such plat-
forms as those surveyed in [1] free developers from the more
mundane aspects of robotics software development, allowing
them to focus on advancing the state of the art instead. We
have found, however, that in practice many of these “mid-
dleware” software platforms abstract too much functionality
from the user, inhibiting real-time control, complicating the
usage of external libraries, and making debugging difficult by
hiding code and functionality from the user. At JPL, we have
the added complication that our software must ultimately run
embedded on extraterrestrial spacecraft with limited memory
and processing power. By designing and testing control
algorithms using middleware with large and complex external
software elements, we often have to start from scratch in
transitioning to the flight system. Furthermore, many of our
projects use multiple testbeds with the same core software
system but require that we often swap out hardware and

behavioral control modules for testing, a practice that is not
easily accomplished with previous frameworks.

Many of these issues are solved by strict decoupling
of software components. For example, a motor controller
interface should merely execute the commands it receives
and not depend on a robot’s physical topology or high-
level behavioral control algorithms. Architectures following
this principle have become prevalent since they were first
described in [2], and later at JPL in [3] and [4]. More modern
implementations like RoboComp [5] provide additional tools
for developing and analyzing discrete software modules, but
they are either tied to some complicated, hidden middleware
that makes debugging difficult, or they do not interface
well with third-party software. Our goal with YADA was
therefore to design a minimal, highly modular architecture
that can leverage the large, active open-source communities
backing external software like ROS [6]. We also required
that hardware interface modules be decoupled from high-
level control modules to facilitate rapid hardware prototyping
while minimizing developer overhead. Finally, we aimed to
implement an architecture in which all abstracted elements
regarding communication between software components are
still exposed to the user for ease of debugging.

II. YADA OVERVIEW
A. Definition of Terms

Throughout this paper, we use module to refer to a self-
contained set of source code files that are compiled (if nec-
essary) into a stand-alone communication node. All modules
run synchronously at user-defined loop rates and commu-
nicate asynchronously with each other. Behavior modules
receive and process state information and subsequently per-
form some function (e.g. path planning). User interface
(UI) modules receive, process, and display state information,
or they provide an interface for users to send commands
directly to other modules. Bus modules communicate with
hardware, execute device-level commands sent from behavior
and Ul modules, and send device state information back.
Bus modules also contain configuration files that allow
message types and helper functions to be auto-generated by
MotGen, a YADA-specific auto-coder, further described in
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Fig. 1. High-level YADA organization. Solid lines show compilation depen-
dencies between YADA components. Shaded boxes represent interchange-
able elements. The dashed arrow labeled “1” indicates that mot_pub_types.c
and mot_pub_types.h containing message structs are auto-generated from the
YAML config files for each bus module.

Section III-B. Consequently, we break out bus modules and
their associated auto-generated files into a separate software
component called mot (pronounced as the first syllable of
“motor”), nomenclature borrowed from JPL flight software.
In the context of mot, we use bus to mean a communication
bus that links a control computer with external hardware. We
use device to mean a hardware and/or communication node
on a particular bus.

B. High-Level Description

YADA is broken down into four components, robot, mod-
ules, mot, and externals that divide and organize configuration
information and source code, as illustrated in Fig. 1. Robot
contains one or more robot platform directories, each contain-
ing information defining their respective bus topologies and
configuration parameters. Modules contains behavior and Ul
modules. Mot contains bus modules and their auto-generated
message structs and helper functions, with which behavior,
UI, and bus modules communicate with one another. Finally,
externals contains pre-compiled libraries. As shown by the
shaded regions in Fig. 1, most of the software base is
interchangeable. Using version control software, swapping
out modules and externals relevant to the current robot
platform can be scripted, eliminating unnecessary code. Our
recommended flexible build system, described in Section VI,
enables seamless recompilation.

C. Inter-Module Communication

As an architecture, YADA emphasizes modularity at the
module level. That is, users are able to easily switch out
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Fig. 2. Example YADA layout showing inter-module communication.

behavior, Ul, and bus modules. Central to this effort is our
framework for interprocess communication (IPC) between
modules. YADA is agnostic to the particular flavor of IPC
used; however, it is important that the publish/subscribe
pattern, or some variant as summarized in [7], be used. YADA
is definitively not “middleware”, and thus should not require
any intermediate message brokering. It is also crucial that
modules be able to run in separate processes and on separate
computers, as shown in Fig. 2. The publish/subscribe pattern
is therefore a natural choice, providing modularity up to the
computer level. Within the publish/subscribe pattern, YADA
provides a system for auto-generating common message types
that all modules use in communicating with one another.
These message types, auto-generated depending on the hard-
ware present on a robot platform, enable users to swap out
bus modules with minimal code changes.

III. YADA DATA STRUCTURES

A key feature that enables the decoupled modularity
that YADA provides is the enforcement of common data
structures between all modules. In our C implementation of
YADA, we defined data structures for device configuration,
device state, and bus-level commands. As illustrated in Fig.
3, we first define mot_config_t, a struct that contains a
union of config structs, one for each device type used in the
current robot platform. Each config struct contains variables
that correspond to parameters relevant to only that device.
Next we define mot_state_t, which contains a union of
state structs, one for each device type used in the current
robot platform. Like the config struct, the state struct contains
state variables pertinent only to its specific device. Finally,
we define a mot__cmd_t struct that contains a union of all
command structs for each bus. We use a command type enum
to dereference the appropriate union member. State structs
are used to relay state information from bus modules to
behavior and UI modules and command structs are used to
send commands the opposite direction.

We use unions in our data structures so as to be
able to store device information in a single array with-
out wasting memory. To do this, we define another struct,



// Language: C

typedef struct {
union {
motor_controller_config_t
motor_controller_config;
bi
} mot_config_t;

typedef struct {
int msg_sender;
union {
motor_controller_state_t motor_controller_state;
bi
} mot_state_t;

typedef struct {
bool execute;
int msg_sender;
mot_cmd_type_t type;
union {
move_position_cmd_t move_position_cmd;
}i
} mot_cmd_t;

typedef struct {
mot_device_type_t type;

mot_config_ t config;
mot_state_t state;
mot_cmd_t cmd;

} mot_device_t;

Fig. 3. Fragment from MotGen output showing YADA data structures.

mot_device_t, that stores a single mot_config_t,
mot_state_t, and mot_cmd_t struct for each device.
As a result, we can fully describe a bus using an ar-
ray of mot_device_t structs, where the position of a
device in the array corresponds to the position of that
device on its physical bus. To describe a complete robot
platform, we define a two dimensional array of device
structs, in which the first dimension refers to the specific
bus and the second to the specific device. For conve-
nience, we wrote robot utility functions to facilitate fill-
ing out and retrieving data from these arrays. For exam-
ple, robot_pub_get_device (bus,device_index)
returns a pointer to the mot_device_t struct at position
device_index on bus bus.

A. Sending State and Command Messages

In communicating with behavior and UI modules, bus
modules send an array of state structs (one for each de-
vice on its bus). The recipients use a mot utility func-
tion, mot_pub_parse_state_msqg (), to copy the state
information into the correct position in their robot array.
This function uses the msg_sender struct member within
mot_state_t to discern from which bus module the state
information came. Similarly, to send commands directly to
bus modules, behavior and Ul modules use a mot utility

function, mot_pub_send_commands (), to extract the
relevant command structs from their robot array and send
them as arrays to the appropriate bus module. To command
a particular device, a module fills out the command variable
fields in the correct position in the array and sets the
execute boolean to true. The command recipient will then
attempt to execute the command if that particular device
is capable of executing it. For example, a sensor could
conceivably be commanded to change its position, which
would not make sense. It is therefore incumbent upon the
bus modules to filter out such nonsensical requests.

B. MotGen Auto-Coder

A key attribute of YADA is that behavior and UI modules
share a messaging framework for communicating with bus
modules. To promote modularity, the message content is
tailored precisely to the devices being used on a given
robot platform. In our C implementation of YADA, our
Python-based auto-coder, “MotGen”, takes YAML config-
uration files from each bus module and adds members to
the previously described unions within the mot_config_t,
mot_state_t, and mot_cmd_t structs. For example,
MotGen would take the YAML file shown in Fig. 4
and auto-generate the human-readable structs file shown
in Fig. 3. Not shown in the latter figure are the defi-
nitions of the member structs in each union. These are
defined earlier in the file and simply contain the type
and name fields copied from the configuration file. The
motor_controller_config_t struct would therefore
contain double position, double velocity, and
double current members. If a user wants to use a
non-standard C type, they must add the appropriate header
file under the includes map key, also shown in Fig.
4. Additionally, in Fig. 3, mot_device_type_t and
mot_cmd_type_t are enums that are auto-populated by
MotGen with all of the devices and command types respec-
tively across all bus modules present in mot. The output
of MotGen is fully transparent to the user, making system-
level debugging much easier than it is using other software
frameworks that hide messaging code.

IV. SPECIFYING HARDWARE TOPOLOGY

YADA places all relevant hardware topology information
in one place. For each robot platform, a single YAML file
includes which devices appear on which bus and in what
order, as well as parameters such as an actuator’s gear
ratio. We chose YAML [8] due to its readability and open-
source support for common programming languages. Our bus
topology file, an example of which is shown in Fig. 5, uses
YAML maps and sequences to encode information. Each
bus type (e.g. RS-485) is specified as a map key whose
value is a sequence of instantiations of that bus. In Fig.
5, for example, rs485_bus has one instantiation, named
limb_1. Each element in this sequence is itself a map



# Language: YAML 1.2

module_name: rs485_bus
includes:
- rs485.h
state:
- device_type: motor_controller
state_variables:

— name: position
type: double
- name: velocity
type: double
— name: current
type: double
# Additional device types here

config:
- device_type: motor_controller
config_variables:

- name: units[256]
type: char
- name: gear_ratio
type: double
— name: max_speed
type: double
# Additional device types here
commands :
— name: move_position
args:
- name: position
type: float
- name: velocity
type: float

# Additional commands here

Fig. 4. Example MotGen input for auto-generating message structs.

comprised of a name, optional bus-level details (e.g. baud
rate) encoded as key/value pairs, and a required map key
called devices. The value of devices must be a sequence
of device parameter maps, whose order corresponds to their
physical bus position.

At runtime, this YAML file is read in by each module
that requires knowledge of device configuration using our
robot utility functions that wrap an open-source YAML
parser [9]. The parameters for each device are stored in
a mot_config_t struct using separate helper functions
defined in each bus module. Typically, only bus modules
require specific details for the devices on their associated
bus, while behavior and UI modules need only the high-level
bus/device layout. If a behavior module needs to know more
specific information about a device (e.g. actuator gear ratio),
it can call a bus module’s device parsing function to fill out
their copy of that device’s mot_config_t struct.

V. YADA MODULES
A. Bus Modules

Bus modules are different from higher-level behavior and
Ul modules in two important ways. First, bus modules
contain extra information necessary for MotGen to auto-
generate message types for communication with higher-level

# Language: YAML 1.2

rs485_bus:
- bus_name: limb_1
devices:
- type: motor_controller
name: wrist
gear_ratio: 156
max_speed: 6.2
- type: motor_controller
name: elbow
gear_ratio: 310
max_speed: 3.14
# Additional devices on bus here
# Additional buses of type rs485_bus here

Fig. 5. Example bus topology YAML file.

modules. Second, we often want to run multiple instances
of the same bus module, as we often have multiple buses of
the same type. For a robot with multiple arms, for example,
it would be convenient to operate each arm on a separate
bus, in case one were to crash, a system-level architecture
described previously in [4]. For this reason, we also include
an integer variable, msg_sender, in the mot_state_t
struct as shown in Fig. 3. This variable allows other modules
receiving an array of state structs to discern from which
bus module that array came. This means that all modules
must know about each bus module’s unique identifier. Our
implementation of YADA maps this unique identifier to the
order in which a given bus module appears in the bus
topology YAML file. While high level modules can read in
this order directly, there is ambiguity at the bus module level,
and thus we also pass in the unique identifier as an option to
the bus module executable.

B. Behavior Modules

Behavior modules control bus modules to perform some set
of actions. Due to the similarity between different behavior
modules, a python auto-coder was created that generates a
new behavior module from a template, naming all of the files
and variables according the desired name of the module. A
key aspect of this auto-coder is that it contains a core and
a project directory, allowing core functionality to be shared
across robot platforms or projects, while project functionality
can be customized for each robot platform. This produces
several advantages: 1) it forces standardization, which re-
duces bugs across code, removes the need to reinvent the
wheel, and makes it easier for people to understand the code,
2) it allows developers to focus on algorithm development
instead of boilerplate code, and 3) enables more code reuse
due to the core/project paradigm. This paradigm consists of
having two independent directories, core and project, that
depend on each other. The core contains generic command
definitions and behaviors, while the project contains project-
specific commands and behaviors. For example, an Arm



module might contain all the basic motion algorithms in the
core, such as joint and cartesian space trajectories and path
planning, while the project could add commands and behav-
iors for controlling a specific gripper mechanism or using a
platform-specific kinematic solver. We chose to implement
behaviors using Hierarchical State Machines (HSMs) (e.g.
[10], [4], and [3]) but any other scheme could be substituted
in to achieve the same result. Our behavior module template
is set up to receive messages from the command-line interface
and communicate with bus modules. Adding a behavior
module to a robot platform involves adding it to the modules
directory, the robot platform CMakeLists.txt file, and the
Cmd and IPC files.

VI. BUILD SYSTEM

For our C implementation of YADA in Ubuntu 14.04, we
use CMake to aid in the compilation process due to its ease
of use, flexibility, and proven reliability [11]. Each behavior,
UI, and bus module has its own CMakeLists.txt configuration
file. Users can specify which of these modules’ configuration
files gets included with a CMakeLists.txt file located within
the current robot platform’s directory. In this way, directories
and references can be different for each robot platform in a
particular YADA instantiation, facilitating modularity at the
build level and consequently code reuse. At the configura-
tion step, an option is passed into the cmake binary that
specifies which robot platform to use for compilation. A
CMakeLists.txt file within the YADA root directory uses this
option to include the appropriate platform’s CMakeLists.txt.

The YADA root CMakeLists.txt file also includes configu-
ration files for mot and optionally external libraries. The mot
CMakeLists.txt file is responsible for calling the MotGen bi-
nary that auto-generates the message structs header and asso-
ciated helper functions files in that same mot directory. These
files are then compiled into the mot library, against which
all modules link. To actually compile YADA, after running
cmake, the user simply runs GNU make to compile all exe-
cutables and libraries. Note that for organizational purposes,
an out-of-source build was chosen, which results in all build
files being put in a separate “build” directory and all module
binaries being put in a separate “bin” directory at the YADA
root directory. Fig. 7 shows an example of how this build
process is structured. In this example, the user would run
cmake -Drobot="Spacecraft Emulator" to setup
the appropriate build and configuration files, and then make
to compile module binaries and the mot library.

VII. COMET SAMPLER APPLICATION EXAMPLE

An example of YADA being used on a real system is
JPL’s comet sampler testbed. Here JPL is exploring a no-
tional mission concept in which a spacecraft would fly to
a comet and retrieve a sample using an on-board sampling
mechanism [12]. For research, an electro-mechanical system
has been developed to emulate a 2000 kg spacecraft with a

Fig. 6. Actual Comet Sampling Spacecraft Emulator hardware.

comet sampling mechanism. Fig. 6 shows this system, which
consists of a 2000 kg cubic structure with seven compressed
air tanks used to control air bearings and thrusters, as well
as a single-actuator sampling mechanism. To emulate the
sampling event, the system floats on air bearings, controls its
thrusters to approach the comet simulant based on position
data from a motion tracker, fires the sampling mechanism,
and retreats from the simulant. This software/hardware sys-
tem is comprised of an operator control station, the untethered
spacecraft, a spacecraft computer, an Arduino Due control-
ling the air bearings and thrusters, a servo drive controlling
the sampling mechanism actuator, and a motion tracker
tracking the position of the spacecraft [13]. Fig. 7 shows
the YADA layout for this system.

A similar system, comprised of the sampling mechanism
at the end of a robotic arm, is also used in testing. The
same YADA system can be used in controlling this testbed
simply by changing the contents of the bus topology file
and including the appropriate bus and behavior modules.
We found that using YADA in switching between these two
testbeds greatly reduced the time required to both set up basic
functionality and develop more complex control algorithms
due to modularity and ease of code sharing.

VIII. DISCUSSION
A. Replacing Bus Modules

Replacing YADA bus modules requires minimal effort.
For example, if a user wishes to replace a particular motor
controller device that uses a different bus communication
protocol, they would first edit the bus topology YAML file
to reflect the changed bus and device type. Next, because
our implementation is written in C, the user would have to
edit how the mot_device_t struct’s unions are derefer-
enced within behavior and UI modules. While this seems
cumbersome, we actually found that the explicit reference to
which bus modules are being used reduced bugs in logic and
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made code more readable. Further, as previously described,
behavior modules are set up such that core functionality
is retained while project functionality is tailored to the
particular bus topology. Therefore, each bus topology has its
own set of project files and so the user does not have to keep
replacing code every time they swap out a bus module.

B. Compatibility With SysML Auto-Coder

As discussed in [14], outlining robotics control software
using block diagrams can be beneficial. Generating state
machines and hardware topologies is well-suited to a block
diagram format and can be developed with a tool such as
MagicDraw [15]. YADA interfaces with this workflow with
no modification by providing standard formats for the HSM
and bus topology files, as well as a library of functions and
devices types available for use in the block diagrams. Though
the implementation outlined in [14] is done with MagicDraw,
YADA can extend to any number of visual diagramming tools
provided they conform to the YADA interface. Once the user
draws block representations of state machines and hardware
layout, they are converted into code and configuration files
respectively following the techniques described in Section
III. This process can quickly be iterated for any change or
additions to the behaviors and devices.

IX. SUMMARY

In summary, YADA is not middleware, but rather a min-
imal software architecture and method for auto-generating

transparent message types and helper functions, which facil-
itate interchangeable software elements. This auto-generated
code provides modules with a common language for exchang-
ing hardware-level state information and commands and is
precisely tailored to the hardware configuration of the current
robot platform. A robot platform’s hardware topology and
configuration is expressed using a single human-readable
YAML file that is parsed by all modules at runtime. Our
suggested flexible build system facilitates switching between
robot platforms with minimal effort. As a result of these
features, YADA significantly reduces developer overhead,
especially in technology development systems that require
rapid prototyping of different hardware configurations and
behavior control modules. Furthermore, its transparent auto-
coding scheme makes debugging simple and facilitates prac-
tical code reuse since there are no hard-coded hidden module
dependencies.
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